Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
BJPsych Open ; 9(3): e66, 2023 Apr 14.
Article in English | MEDLINE | ID: covidwho-2295744

ABSTRACT

BACKGROUND: In the connected world, although societies are not directly involved in a military conflict, they are exposed to media reports of violence. AIMS: We assessed the effects of such exposures on mental health in Germany during the military conflict in Ukraine. METHOD: We used the German population-based cohort for digital health research, DigiHero, launching a survey on the eighth day of the Russo-Ukrainian war. Of the 27 509 cohort participants from the general population, 19 444 (70.7%) responded within 17 days. We measured mental health and fear of the impact of war compared with other fears (natural disasters or health-related). RESULTS: In a subsample of 4441 participants assessed twice, anxiety in the population (measured by the Generalised Anxiety Disorder-7 screener) was higher in the first weeks of war than during the strongest COVID-19 restrictions. Anxiety was elevated across the whole age spectrum, and the mean was above the cut-off for mild anxiety. Over 95% of participants expressed various degrees of fear of the impact of war, whereas the percentage for other investigated fears was 0.47-0.82. A one-point difference in the fear of the impact of war was associated with a 2.5 point (95% CI 2.42-2.58) increase in anxiety (11.9% of the maximum anxiety score). For emotional distress, the increase was 0.67 points (0.66-0.68) (16.75% of the maximum score). CONCLUSIONS: The population in Germany reacted to the Russo-Ukrainian war with substantial distress, exceeding reactions during the strongest restrictions in the COVID-19 pandemic. Fear of the impact of war was associated with worse mental health.

2.
J Med Virol ; 2022 Dec 02.
Article in English | MEDLINE | ID: covidwho-2235359

ABSTRACT

Post-acute sequelae of COVID-19 (PASC) are long-term consequences of SARS-CoV-2 infection that can substantially impair quality of life. Underlying mechanisms ranging from persistent virus to innate and adaptive immune dysregulation have been discussed. Here, we profiled plasma of 181 individuals from the cohort study for digital health research in Germany (DigiHero) including individuals after mild to moderate COVID-19 with or without PASC and uninfected controls. We focused on soluble factors related to monocyte/macrophage biology and on circulating SARS-CoV-2 spike (S1) protein as potential biomarker for persistent viral reservoirs. At a median time of eight months after infection, we found pronounced dysregulation in almost all tested soluble factors including both pro-inflammatory and pro-fibrotic cytokines. These immunological perturbations were remarkably independent of ongoing PASC symptoms per se, but further correlation and regression analyses suggested PASC specific patterns involving CCL2/MCP-1 and IL-8 that either correlated with sCD162, sCD206/MMR, IFN-α2, IL-17A and IL-33, or IL-18 and IL-23. None of the analyzed factors correlated with the detectability or levels of circulating S1 indicating that this represents an independent subset of patients with PASC. This data confirms prior evidence of immune dysregulation and persistence of viral protein in PASC and illustrates its biological heterogeneity that still awaits correlation with clinically defined PASC subtypes. This article is protected by copyright. All rights reserved.

3.
Front Immunol ; 13: 876306, 2022.
Article in English | MEDLINE | ID: covidwho-1865451

ABSTRACT

The COVID-19 pandemic shows that vaccination strategies building on an ancestral viral strain need to be optimized for the control of potentially emerging viral variants. Therefore, aiming at strong B cell somatic hypermutation to increase antibody affinity to the ancestral strain - not only at high antibody titers - is a priority when utilizing vaccines that are not targeted at individual variants since high affinity may offer some flexibility to compensate for strain-individual mutations. Here, we developed a next-generation sequencing based SARS-CoV-2 B cell tracking protocol to rapidly determine the level of immunoglobulin somatic hypermutation at distinct points during the immunization period. The percentage of somatically hypermutated B cells in the SARS-CoV-2 specific repertoire was low after the primary vaccination series, evolved further over months and increased steeply after boosting. The third vaccination mobilized not only naïve, but also antigen-experienced B cell clones into further rapid somatic hypermutation trajectories indicating increased affinity. Together, the strongly mutated post-booster repertoires and antibodies deriving from this may explain why the third, but not the primary vaccination series, offers some protection against immune-escape variants such as Omicron B.1.1.529.


Subject(s)
B-Lymphocytes , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , COVID-19/prevention & control , COVID-19 Vaccines/immunology , COVID-19 Vaccines/metabolism , Humans , Pandemics , SARS-CoV-2/genetics , Vaccination/methods , mRNA Vaccines/immunology
4.
Nat Commun ; 12(1): 5096, 2021 08 19.
Article in English | MEDLINE | ID: covidwho-1366815

ABSTRACT

Nearly all mass gathering events worldwide were banned at the beginning of the COVID-19 pandemic, as they were suspected of presenting a considerable risk for the transmission of SARS-CoV-2. We investigated the risk of transmitting SARS-CoV-2 by droplets and aerosols during an experimental indoor mass gathering event under three different hygiene practices, and used the data in a simulation study to estimate the resulting burden of disease under conditions of controlled epidemics. Our results show that the mean number of measured direct contacts per visitor was nine persons and this can be reduced substantially by appropriate hygiene practices. A comparison of two versions of ventilation with different air exchange rates and different airflows found that the system which performed worst allowed a ten-fold increase in the number of individuals exposed to infectious aerosols. The overall burden of infections resulting from indoor mass gatherings depends largely on the quality of the ventilation system and the hygiene practices. Presuming an effective ventilation system, indoor mass gathering events with suitable hygiene practices have a very small, if any, effect on epidemic spread.


Subject(s)
Air Pollution, Indoor/prevention & control , COVID-19/transmission , Hygiene/standards , SARS-CoV-2/pathogenicity , Ventilation/methods , Aerosols , COVID-19/diagnosis , COVID-19/virology , Computer Simulation , Disease Transmission, Infectious/prevention & control , Humans , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL